La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Gouy
J. Phys. Theor. Appl., 8 1 (1889) 501-518
Citations de cet article :
54 articles
Exergy and Irreversibility Analysis in Non-Equilibrium Thermal Porous Rectangular Channel
Billel Yessad, Abdessamed Medelfef, Abderraouf Arabi and Ferhat Souidi Fluids 10 (3) 71 (2025) https://doi.org/10.3390/fluids10030071
Entropy Generation Optimization in Multidomain Systems: A Generalized Gouy-Stodola Theorem and Optimal Control
Hanz Richter, Meysam Fathizadeh and Tyler Kaptain Entropy 27 (6) 612 (2025) https://doi.org/10.3390/e27060612
Rethinking Loss of Available Work and Gouy–Stodola Theorem
Yaodong Tu and Gang Chen ASME Journal of Heat and Mass Transfer 147 (3) (2025) https://doi.org/10.1115/1.4066860
Analysis of Possible Negative Values for 2nd Law Efficiencies in an Extractive Distillation System
Nayana Pereira Andrade, Savana Barbosa Villar Gonçalves, Rivana Mabel Lucena Oliveira Souto, Victor Hugo Braz de Lima, Karoline Dantas Brito and Romildo Pereira Brito Revista de Gestão Social e Ambiental 18 (12) e010227 (2024) https://doi.org/10.24857/rgsa.v18n12-036
Energy-exergy analysis of tunnel type glaze kiln used in porcelain firing
Musa Hilal Gurbuz, Mesut Yazici and Ramazan Kose Energy Efficiency 17 (7) (2024) https://doi.org/10.1007/s12053-024-10260-7
Numerical investigation of entropy generation induced by assisted mixed convection in a vertical convergent channel: effects of geometric parameters
A. Abidi-saad, S. Hadjadj, S. Saouli and G. Polidori Thermophysics and Aeromechanics 31 (3) 599 (2024) https://doi.org/10.1134/S0869864324030211
Numerical study on a coaxial geothermal exchanger equipped with a new inner tube: Entropy generation, thermodynamic irreversibility analysis and exergy efficiency performance evaluation
Qiangbin Liu, Yanjun Zhang, Xin Zhang, et al. Journal of Cleaner Production 424 138803 (2023) https://doi.org/10.1016/j.jclepro.2023.138803
Philosophy of thermodynamics
Arto Annila Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381 (2252) (2023) https://doi.org/10.1098/rsta.2022.0281
Refrigerators, Heat Pumps and Reverse Cycle Engines
Jocelyn BONJOUR and Rémi REVELLIN Refrigerators, Heat Pumps and Reverse Cycle Engines 45 (2023) https://doi.org/10.1002/9781394228881.ch2
Exergy and energy analysis of compression ignition engine using diesel and karanja oil blends under varying compression ratio and engine load
Mahendra Kumar Rath and Dillip Kumar Mohanta Biofuels 14 (2) 173 (2023) https://doi.org/10.1080/17597269.2022.2124687
A Comparative Study of Entropy Generation Analysis Through Cartesian and Cylindrical Annulus Geometries
Abir Sakly and Nejla Mahjoub Said ASME Journal of Heat and Mass Transfer 145 (1) (2023) https://doi.org/10.1115/1.4055890
Energy, Exergy, Entropy Generation Minimization, and Exergoenvironmental Analyses of Energy Systems-A Mini-Review
Juan C. Ordonez, Eduardo J. C. Cavalcanti and Monica Carvalho Frontiers in Sustainability 3 (2022) https://doi.org/10.3389/frsus.2022.902071
Energy Cyclo-Directionality, Average Equipartition and Exergy Efficiency of Multidomain Power Networks
Hanz Richter IEEE Control Systems Letters 6 3337 (2022) https://doi.org/10.1109/LCSYS.2022.3184748
Deterministic matrix-based radiative design using a new general formulation of exergy and exergy efficiency for hybrid solar collectors
Tudor Baracu, Monica Patrascu, Catalin Teodosiu, et al. Applied Thermal Engineering 182 115318 (2021) https://doi.org/10.1016/j.applthermaleng.2020.115318
Time, Irreversibility and Entropy Production in Nonequilibrium Systems
Umberto Lucia, Giulia Grisolia and Alexander L. Kuzemsky Entropy 22 (8) 887 (2020) https://doi.org/10.3390/e22080887
Heat and mass transfer of combined forced convection and thermal radiation within a channel: Entropy generation analysis
A. Sakly and F. Ben Nejma Applied Thermal Engineering 171 114903 (2020) https://doi.org/10.1016/j.applthermaleng.2020.114903
Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy
S.Z. Abbas, M. Ijaz Khan, S. Kadry, et al. Computer Methods and Programs in Biomedicine 190 105362 (2020) https://doi.org/10.1016/j.cmpb.2020.105362
Development and Results from Application of PCM-Based Storage Tanks in a Solar Thermal Comfort System of an Institutional Building—A Case Study
F. Javier Batlles, Bartosz Gil, Svetlana Ushak, Jacek Kasperski, Marcos Luján, Diana Maldonado, Magdalena Nemś, Artur Nemś, Antonio M. Puertas, Manuel S. Romero-Cano, Sabina Rosiek and Mario Grageda Energies 13 (15) 3877 (2020) https://doi.org/10.3390/en13153877
Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine
Roie Dann, Ronnie Kosloff and Peter Salamon Entropy 22 (11) 1255 (2020) https://doi.org/10.3390/e22111255
Energy efficiency of respiration in mature and newborn reindeer
Simon Birger Byremo Solberg, Signe Kjelstrup, Elisa Magnanelli, et al. Journal of Comparative Physiology B 190 (4) 509 (2020) https://doi.org/10.1007/s00360-020-01284-3
Experimental determination of entropy and exergy in low cycle fatigue
Patrick Ribeiro, Johann Petit and Laurent Gallimard International Journal of Fatigue 136 105333 (2020) https://doi.org/10.1016/j.ijfatigue.2019.105333
Performance optimization of low-dissipation thermal machines revisited
Ramandeep S. Johal Physical Review E 100 (5) (2019) https://doi.org/10.1103/PhysRevE.100.052101
Fractal and Trans-scale Nature of Entropy
Fractal and Trans-scale Nature of Entropy 225 (2018) https://doi.org/10.1016/B978-1-78548-193-2.50012-5
Application of Finite-Time and Control Thermodynamics to Biological Processes at Multiple Scales
Ty N. F. Roach, Peter Salamon, James Nulton, et al. Journal of Non-Equilibrium Thermodynamics 43 (3) 193 (2018) https://doi.org/10.1515/jnet-2018-0008
Effect of temperature-dependent energy levels on exergy
Takuya Yamano Journal of Physics Communications 1 (5) 055007 (2017) https://doi.org/10.1088/2399-6528/aa95e4
Pitfalls of Exergy Analysis
Petr Vágner, Michal Pavelka and František Maršík Journal of Non-Equilibrium Thermodynamics 42 (2) 201 (2017) https://doi.org/10.1515/jnet-2016-0043
Adopting exergy analysis for use in aerospace
David Hayes, Mudassir Lone, James F. Whidborne, José Camberos and Etienne Coetzee Progress in Aerospace Sciences 93 73 (2017) https://doi.org/10.1016/j.paerosci.2017.07.004
Entropy Production Minimization as Design Principle for Membrane Systems: Comparing Equipartition Results to Numerical Optima
Elisa Magnanelli, Eivind Johannessen and Signe Kjelstrup Industrial & Engineering Chemistry Research 56 (16) 4856 (2017) https://doi.org/10.1021/acs.iecr.7b00493
Assessment of Sustainability Indicators of Thermoelectric Power Generation in Cameroon Using Exergetic Analysis Tools
Moungnutou Mfetoum Inoussah, Moukengue Imano Adolphe and Lissouck Daniel Energy and Power Engineering 09 (01) 22 (2017) https://doi.org/10.4236/epe.2017.91003
Sam Yang, Mauricio B. Chagas, Tomas Solano, Juan C. Ordonez, Taylor Davis, Jose V. C. Vargas and Camilo Ordonez 42 (2015) https://doi.org/10.1109/SusTech.2015.7314319
The Nature of Motive Force
Achintya Kumar Pramanick Heat and Mass Transfer, The Nature of Motive Force 1 (2014) https://doi.org/10.1007/978-3-642-54471-2_1
Génie énergétique
Michel Feidt Génie énergétique 137 (2014) https://doi.org/10.3917/dunod.feidt.2014.01.0137
Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems
Wei Wu and Jin Wang The Journal of Chemical Physics 141 (10) (2014) https://doi.org/10.1063/1.4894389
Exergy
Silvio de Oliveira Green Energy and Technology, Exergy 5 (2013) https://doi.org/10.1007/978-1-4471-4165-5_2
Multiphase Flow Dynamics 1
Nikolay Ivanov Kolev Multiphase Flow Dynamics 1 321 (2011) https://doi.org/10.1007/978-3-642-20605-4_7
Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology
Adrien Gomez, Luc Pibouleau, Catherine Azzaro-Pantel, et al. Energy Conversion and Management 51 (4) 859 (2010) https://doi.org/10.1016/j.enconman.2009.11.022
Entropy Generation in the Viscous Parts of Turbulent Boundary Layers
Donald M. McEligot, Edmond J. Walsh, Eckart Laurien and Philippe R. Spalart Journal of Fluids Engineering 130 (6) (2008) https://doi.org/10.1115/1.2928376
Multiphase Flow Dynamics
Nikolay I. Kolev Multiphase Flow Dynamics 311 (2007) https://doi.org/10.1007/3-540-69833-7_7
Amip Shah, Van Carey, C. Bash and C. Patel 99 (2005) https://doi.org/10.1109/STHERM.2005.1412165
Multiphase Flow Dynamics 1
Multiphase Flow Dynamics 1 317 (2005) https://doi.org/10.1007/3-540-26829-4_7
Wladimir Sarmiento-Darkin and Noam Lior 325 (2005) https://doi.org/10.1115/IMECE2005-80554
DAMPING FACTOR AS AN INDICATOR OF CRACK SEVERITY
S.D. PANTELIOU, T.G. CHONDROS, V.C. ARGYRAKIS and A.D. DIMAROGONAS Journal of Sound and Vibration 241 (2) 235 (2001) https://doi.org/10.1006/jsvi.2000.3299
Low-Frequency Acoustic Sweep Monitoring of Bone Integrity and Osteoporosis
S. D. Panteliou, H. Abbasi-Jahromi, A. D. Dimarogonas, W. Kohrt and R. Civitelli Journal of Biomechanical Engineering 121 (4) 423 (1999) https://doi.org/10.1115/1.2798340
Elastothermodynamic Damping of Fiber-Reinforced Metal-Matrix Composites
K. B. Milligan and V. K. Kinra Journal of Applied Mechanics 62 (2) 441 (1995) https://doi.org/10.1115/1.2895950
Prozeßentwicklung: Von der Exergieanalyse bis zur EDV‐gestützten Optimierung
Martin Streich, Hans Kistenmacher and Volker Mohr Chemie Ingenieur Technik 63 (4) 329 (1991) https://doi.org/10.1002/cite.330630407
On the concept of exergy and available enthalpy: Application to atmospheric energetics
Pascal Marquet Quarterly Journal of the Royal Meteorological Society 117 (499) 449 (1991) https://doi.org/10.1002/qj.49711749903
Teaching Thermodynamics
B. Linnhoff Teaching Thermodynamics 297 (1985) https://doi.org/10.1007/978-1-4613-2163-7_35
Principles of Energetics
K. S. Spiegler Principles of Energetics 1 (1983) https://doi.org/10.1007/978-3-642-95434-4_1
Principles of Energetics
K. S. Spiegler Principles of Energetics 19 (1983) https://doi.org/10.1007/978-3-642-95434-4_2
Principles of Desalination
ROBERT B. EVANS, GARY L. CRELLIN and MYRON TRIBUS Principles of Desalination 1 (1980) https://doi.org/10.1016/B978-0-12-656701-4.50007-3
Exergy economics
Richard A. Gaggioli and William J. Wepfer Energy 5 (8-9) 823 (1980) https://doi.org/10.1016/0360-5442(80)90099-7
The efficiency of solar flat-plate collectors
E. Marschall and G. Adams Solar Energy 20 (5) 413 (1978) https://doi.org/10.1016/0038-092X(78)90158-5
Energieumwandlung durch chemische Verfahren
Lothar Riekert Chemie Ingenieur Technik 47 (2) 48 (1975) https://doi.org/10.1002/cite.330470203
Exergieverluste der Wärmeaustauscher. Teil 1: Exergieverlust infolge Reibung
Romano Gregorig Chemie Ingenieur Technik 37 (2) 108 (1965) https://doi.org/10.1002/cite.330370205